Natural transformation of Thermotoga sp. strain RQ7

نویسندگان

  • Dongmei Han
  • Hui Xu
  • Rutika Puranik
  • Zhaohui Xu
چکیده

BACKGROUND Thermotoga species are organisms of enormous interest from a biotechnological as well as evolutionary point of view. Genetic modifications of Thermotoga spp. are often desired in order to fully release their multifarious potentials. Effective transformation of recombinant DNA into these bacteria constitutes a critical step of such efforts. This study aims to establish natural competency in Thermotoga spp. and to provide a convenient method to transform these organisms. RESULTS Foreign DNA was found to be relatively stable in the supernatant of a Thermotoga culture for up to 6 hours. Adding donor DNA to T. sp. strain RQ7 at its early exponential growth phase (OD600 0.18 ~ 0.20) resulted in direct acquisition of the DNA by the cells. Both T. neapolitana chromosomal DNA and Thermotoga-E. coli shuttle vectors effectively transformed T. sp. strain RQ7, rendering the cells resistance to kanamycin. The kan gene carried by the shuttle vector pDH10 was detected by PCR from the plasmid extract of the transformants, and the amplicons were verified by restriction digestions. A procedure for natural transformation of Thermotoga spp. was established and optimized. With the optimized method, T. sp. strain RQ7 sustained a transformation frequency in the order of 10⁻⁷ with both genomic and plasmid DNA. CONCLUSIONS T. sp. strain RQ7 cells are naturally transformable during their early exponential phase. They acquire DNA from both closely and distantly related species. Both chromosomal DNA and plasmid DNA serve as suitable substrates for transformation. Our findings lend a convenient technical tool for the genetic engineering of Thermotoga spp.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction and transformation of a Thermotoga-E. coli shuttle vector

BACKGROUND Thermotoga spp. are attractive candidates for producing biohydrogen, green chemicals, and thermostable enzymes. They may also serve as model systems for understanding life sustainability under hyperthermophilic conditions. A lack of genetic tools has hampered the investigation and application of these organisms. This study aims to develop a genetic transfer system for Thermotoga spp....

متن کامل

Complete genome sequence of Thermotoga sp. strain RQ7

Thermotoga sp. strain RQ7 is a member of the family Thermotogaceae in the order Thermotogales. It is a Gram negative, hyperthermophilic, and strictly anaerobic bacterium. It grows on diverse simple and complex carbohydrates and can use protons as the final electron acceptor. Its complete genome is composed of a chromosome of 1,851,618 bp and a plasmid of 846 bp. The chromosome contains 1906 put...

متن کامل

Both DNA gyrase and reverse gyrase are present in the hyperthermophilic bacterium Thermotoga maritima.

Like all hyperthermophiles yet tested, the bacterium Thermotoga maritima contains a reverse gyrase. Here we show that it contains also a DNA gyrase. The genes top2A and top2B encoding the two subunits of a DNA gyrase-like enzyme have been cloned and sequenced. The Top2A (type II DNA topoisomerase A protein) is more similar to GyrA (DNA gyrase A protein) than to ParC [topoisomerase IV (Topo IV) ...

متن کامل

Expression of Heterologous Cellulases in Thermotoga sp. Strain RQ2

The ability of Thermotoga spp. to degrade cellulose is limited due to a lack of exoglucanases. To address this deficiency, cellulase genes Csac_1076 (celA) and Csac_1078 (celB) from Caldicellulosiruptor saccharolyticus were cloned into T. sp. strain RQ2 for heterologous overexpression. Coding regions of Csac_1076 and Csac_1078 were fused to the signal peptide of TM1840 (amyA) and TM0070 (xynB),...

متن کامل

Genome sequence of Thermotoga sp. strain RQ2, a hyperthermophilic bacterium isolated from a geothermally heated region of the seafloor near Ribeira Quente, the Azores.

Thermotoga sp. strain RQ2 is probably a strain of Thermotoga maritima. Its complete genome sequence allows for an examination of the extent and consequences of gene flow within Thermotoga species and strains. Thermotoga sp. RQ2 differs from T. maritima in its genes involved in myo-inositol metabolism. Its genome also encodes an apparent fructose phosphotransferase system (PTS) sugar transporter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014